Approximating the distributions of estimators of financial risk under an asymmetric Laplace law

نویسندگان

  • A. Alexandre Trindade
  • Yun Zhu
چکیده

Explicit expressions are derived for parametric and nonparametric estimators (NPEs) of two measures of financial risk, value-atrisk (VaR) and conditional value-at-risk (CVaR), under random sampling from the asymmetric Laplace (AL) distribution.Asymptotic distributions are established under very general conditions. Finite sample distributions are investigated by means of saddlepoint approximations. The latter are highly computationally intensive, requiring novel approaches to approximate moments and special functions that arise in the evaluation of the moment generating functions. Plots of the resulting density functions shed new light on the quality of the estimators. Calculations for CVaR reveal that the NPE enjoys greater asymptotic efficiency relative to the parametric estimator than is the case for VaR.An application of the methodology in modeling currency exchange rates suggests that the AL distribution is successful in capturing the peakedness, leptokurticity, and skewness, inherent in such data. A demonstrated superiority in the resulting parametric-based inferences delivers an important message to the practitioner. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric Univariate and Bivariate Laplace and Generalized Laplace Distributions

Alternative specifications of univariate asymmetric Laplace models are described and investigated. A more general mixture model is then introduced. Bivariate extensions of these models are discussed in some detail, with particular emphasis on associated parameter estimation strategies. Multivariate versions of the models are briefly introduced.

متن کامل

Minimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions

This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...

متن کامل

Admissible Estimators of ?r in the Gamma Distribution with Truncated Parameter Space

In this paper, we consider admissible estimation of the parameter ?r in the gamma distribution with truncated parameter space under entropy loss function. We obtain the classes of admissible estimators. The result can be applied to estimation of parameters in the normal, lognormal, pareto, generalized gamma, generalized Laplace and other distributions.

متن کامل

Asymmetric Uniform-Laplace Distribution‎: ‎Properties and Applications

‎The goal of this study is to introduce an Asymmetric Uniform-Laplace (AUL) distribution‎. ‎We present a detailed theoretical description of this distribution‎. ‎We try to estimate the parameters of AUL distribution using the maximum likelihood method‎. ‎Since the likelihood approach results in complicated forms‎, ‎we suggest a bootstrap-based approach for es...

متن کامل

Mixed Estimators of Ordered Scale Parameters of Two Gamma Distributions with Arbitrary Known Shape Parameters

When an ordering among parameters is known in advance,the problem of estimating the smallest or the largest parametersarises in various practical problems. Suppose independent randomsamples of size ni drawn from two gamma distributions withknown arbitrary shape parameter no_i > 0 and unknown scale parameter beta_i > 0, i = 1, 2. We consider the class of mixed estimators of 1 and 2 under the res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2007